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SUMMARY:

The Microgravity Plant Nutrient Experiment (MPNE) is a Space

Shuttle middeck locker hardware test to verify the operation of a

hydroponic system devised for microgravity called the Porous Tube

Plant Nutrient Delivery System. Physical tests of the system

under various accelerations on the NASA KC-135 have been

successful.
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Introduction:

NASA's Controlled Ecological Life Support System (CELSS)

Program centers on using crop plants to recycle air and

water and produce food for long-term space exploration. The

CELSS Test Facility (CTF) is a plant research facility being

planned for Space Station Freedom. The design and

implementation of the CTF is dependent on the development of

critical technologies such as atmospheric concentrations

control, water (condensate) recovery and plant water and

nutrient delivery.

The Microgravity Plant Nutrient Experiment (MPNE) is a CTF

Critical Technology flight test to verify the operation of a

hydroponic system devised for microgravity. The system is

called the Porous Tube Plant Nutrient Delivery System. This

experiment involves the development of experimental hardware

for the Space Shuttle middeck and a flight experiment to

perform functional verification in space. Previous works

indicate that in microgravity, the capillary and surface

tension forces predominate (Tsao et al., 1993; Finger,

1992). To determine the effects of these forces on specific

nutrient delivery systems, testing was performed under

varying acceleration conditions during parabolic flight on

the NASA KC-135 aircraft (JSC, 1991; Walker et al., 1992).

A typical parabolic profile is shown in Figure i. Three

fluid loop Test Bed Units or TBUs (Figure 2) were flown to

test the physical operation of the Porous Tube
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Figure i. A parabolic profile from the NASA KC-135 (from

the JSC KC-135 Users Manual, Appendix E, P. E-l).
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Figure 2. Schematic diagram of one of the Porous Tube Plant

Nutrient Delivery System Test Bed Units (TBU).
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Plant Nutrient Delivery System or PTPNDS (Dreschel and

Sager, 1989; Dreschel, 1990; Dreschel, 1992; Dreschel,

1992a; Dreschel, 1992b; Dreschel and Brown, 1993; Dreschel

et al., 1993) under various acceleration environments,

specifically controlling the wetting of the surface of the

porous tube. These TBUs contained a PTPNDS including a

porous ceramic delivery tube, pump, fluid loop, syringe

pump, reservoir syringe, and various sensors. The TBUs were

computer controlled and each contained a ceramic tube of a

different pore size (0.3, 0.7 and 2.0 micrometer). Also

flown on the KC-135 was a glovebox in which various

prototype devices for plant nutrient solution delivery were

operated and observed. These were porous tubes, aeroponic

and flow-through hydroponic systems and a device using

porous teflon tubing for removing bubbles from water.

Characterizing the acceleration environment on the NASA KC-

135 aircraft:

Three sorties were flown and a three-axis accelerometer

(XYZ) was included in the TBU package. Acceleration is

measured relative to earth normal gravity (I.0 g). Examples

of first day parabolas are shown in Figure 3, which include

zero-g, simulated Lunar (one-sixth g at about 125 seconds)

and Mars gravities (one-third g at about 750 seconds) and

the approximately 1.8 g which is provided by the

acceleration into the parabola. The zero-g environment,

which lasts approximately 15 seconds (Figure 4) varies
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Figure 3. Example plot of acceleration versus time for the

MPNE tests on the KC-135.
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Figure 4. An example of microgravity acceleration versus

time experienced on the KC-135.
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between -.02 and ..05 g in the Z direction, is slightly

negative in the X direction (-0.05 g) and is zero or

slightly negative (-0.01 g) in the Y direction. A simulated

lunar acceleration environment which lasts about 20 seconds

(Figure 5), varies between .14 and .21 g (Z direction) and

is similar to the zero-g environment in the X and Y

directions. The simulated Mars acceleration lasted about 30

seconds per parabola (Figure 6). This was between 0.27 and

0.44 g (Z direction) and again similar to the zero-g

environment in the X and Y directions.

Although the various gravity environments are not

sufficiently long or uniformly constant on the KC-135 for

examining the response of biological systems to each

acceleration environment, there is ample time to make

valuable observations and perform dynamic physical

experiments or tests on spaceflight hardware.

Evaluating the Porous Tube Plant Nutrient Delivery System

response to various acceleration environments:

The ceramic tubes used in the TBUs are conventional porous

ceramic filters (Osmonics, Inc., Minnetonka, MN)* which

serve as a capillary interface between nutrient solution and

plant roots, allowing the fine control of solution supplied

"The use of a brand name does no_ imply endorsement by NASA

or The Bione£ics Corporation.
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Figure 5. An example of Lunar gravity acceleration versus

time experienced on the KC-135.
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Figure 6. An example of Mars gravity acceleration versus

time experienced on the KC-135.

.6

FOR

MPNE DATA ANALYSIS
ACCELERATION VS TIME

PARABOLA SET #1, DAY #1, Mars

[ '--'_-- X-ACCEL[RATION I
Y-ACC[LEKATION

@ Z-ACC[LrkA'rl0N

(.9

Z
O

I---
<_
rY
LJ
._J
i.i
(J
O
<_

.4

-.2
I

0

I I

10 20

TIME (SECONDS)

I

3O

I0



tO the roots (Dreschel, 1990, Dreschel et al., 1992,

Dreschel et al., 1992a, Dreschel et al., 1992b). Surface

wetness was measured and controlled using an infrared Water

Availability Sensor or WAS (Developed by The Bionetics

Corporation and built by Boeing, Kennedy Space Center, FL)',

with Optoware (Opto 22, Huntington Beach, CA)" analog to

digital interface equipment and a laptop computer. The

surface wetness of the porous tube decreased the infrared

reflectance as measured by the WASand therefore provided a

negatively correlated signal for control. The control of

surface wetness was facilitated by a stepper motor operated

syringe pump which could add or remove water from the fluid

loop when required.

The three TBUs were flown for the three sorties, a total of

147 parabolas over two days. During the first sortie, the

computer was programmed to control the WAS readings to a

single set point for each TBU. During the second and third

sorties, the computer was programmed to control the WAS

readings dependent on acceleration by adding or removing

water from the fluid loop via the syringe pump. Initial set

points were determined during laboratory testing of the TBUs

and adjusted as needed during the sorties. During the

sorties, the WAS operated as expected and the surface

wetness of the tubes was dependent on pore size, control

algorithms, and acceleration (Figure 7). The ability to

control the surface wetness decreased with decreasing pore
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Figure 7. Examples of Water Availability Sensor readings

versus time with control to a single set-point.
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size as acceleration changed, thus the smallest pore size

tube responded slowly and did not allow the control dynamics

obtained with the other tubes. A similar pattern was seen

when controlling setpoint to acceleration (Figure 8).

Response time increased with decreasing pore size, giving

overall greater variability.

The amount of water added to the fluid loop by the syringe

pump was measured by a Syringe Position Sensor (SPS). A

0.01 volt increase in SPS readings corresponded to a 11.56

microliter addition of water to the fluid loop. A linear

relationship was demonstrated between the WAS voltage and

the amount of water (from SPS readings) added to attain the

readings during a number of parabolas, especially from the

0.7 micron pore size TBU (Figure 9). This relationship was

verified in the laboratory (constant l-g) by injecting

appropriate volumes of water into a sealed tube and making

WAS measurements (Figure i0). The linear relationship seen

on the KC-135 indicates a rapid and linear response of the

hardware to the changes in acceleration experienced during

the parabolas. As with the laboratory measurements, it

demonstrates a similar response of the surface moisture on

the porous tube in varying gravities and at a constant one

gravity. This linear relationship was most commonly seen

during the change from 1.8-g to micro-g and much less common

during the micro-g to 1.8-g segment of the parabola. This

relationship demonstrates the sensitivity of the WAS as a
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Figure 8. Examples of Water Availability Sensor readings

versus time with acceleration dependent control.
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Figure 9. An example of Water Availability Sensor readings

versus volume of water added during changing acceleration on

the KC-135.
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Figure i0. An example of Water Availability Sensor readings

versus volume of water added during laboratory measurements
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controlling moisture sensor on the porous tubes in various

acceleration environments. It also shows that the physical

control of moisture on the surface of the porous tube has

very little dependence on gravity. The principal

controlling forces are surface tension, atmospheric pressure

and capillary action.

Observations of the Physical Operation of Various Hydroponic

Techniques under various acceleration environments:

A large glovebox was flown aboard the KC-135 for the

manipulation of fixtures fabricated to simulate various

hydroponic techniques under micro-g. These included porous

ceramic tubes fixed between two syringes, a porous stainless

steel tube fixed between two syringes, two rectangular

containers with spray nozzles and syringe pumps similar to

an aeroponics system (Dreschel, 1992b), a rectangular

container with polyethylene filters and a syringe pump to

simulate the Vacuum Operated Nutrient Delivery System or

VONDS (Brown et al., 1993) and a porous teflon tubing device

for removal of air bubbles from water.

Dry porous ceramic tubes were attached at either end to 60

ml syringes, one full of water, the other empty. The dry

tubes were filled by injecting water from the full syringe

until weeping occurred, then pulling water through by

drawing back the piston from the empty syringe. A _ or

more thick layer of water could be maintained on the porous
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tubes under micro-g conditions. Significant movement in any

direction could cause the water to be carried off the

surface of the tube. Air could be readily expelled from

the dry tube until the inside surface of the tube was

saturated. The porous stainless steel tube performed in a

similar manner to the porous ceramic tube.

The "aeroponic" containers and the VONDS container

demonstrated the large influence of surface tension in the

absence of gravity. The water tended either to form into

globules and float around inside of the container or adhere

to the corners of the container. A considerable amount of

shaking motion was required to break the water free from the

container corners. Control of the flow of the water was

lost as soon as the connection to the fluid loop from the

syringe was broken by air entrained in the stream.

The porous teflon tubing tested for use as a phase

separation device performed with moderate success. Although

the short duration of the period of microgravity did not

allow complete separation, some of the air could be expelled

from the pores during the transfer of the air-water mixture

between the syringes via the porous teflon tubing.

In sun_nary, the TBU's, including the infrared moisture

sensor performed well, demonstrating an ability to control

wetness on the surface of the porous tubes under various
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acceleration environments. As expected, water could be held

in place readily on the surface of the porous tubes under

microgravity because of the hydrophilic nature of the

ceramic material. The 0.7 micron pore size tube was chosen

for use in the Shuttle flight hardware test because it

allowed rapid control of the surface moisture yet has a pore

size sufficiently small as to prevent the growth of

roots/root hairs into the substrate. The glovebox

activities demonstrated what difficulties may be encountered

in the various hydroponic techniques examined. These

difficulties are mainly due to the fact that in the absence

of gravity, surface tension dominates and liquids tend to

form stable globules or adhere strongly to surfaces.
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